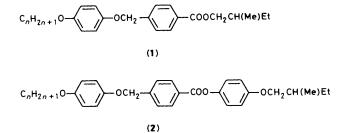
The Thermal Properties of Liquid Crystals exhibiting a Chiral Smectic C Phase

Shunsuke Takenaka,* Tetsuya Ikemoto, and Shigekazu Kusabayashi

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

The preparation and thermal properties of two series of compounds exhibiting a chiral smectic C phase, *i.e.*, (*S*)-2-methylbutyl 4-(4-alkoxyphenoxymethyl)benzoates and (*S*)-4-(2-methylbutoxy)phenyl 4-(4-alkoxyphenoxymethyl)benzoates are reported.

There has been intense interest in the preparation of liquid crystals that exhibit a chiral smectic C (SC^{*}_C) phase for devices employing a ferroelectric mode. The low melting S^{*}_C materials hitherto reported consist of two aromatic rings, *i.e.*, biphenyl,¹ phenyl benzoate,¹ or benzylideneaniline.² Compounds containing a pyrimidine rings show similar properties. In this paper, we describe the thermal properties of two new homologous series incorporating a $-OCH_2$ -linkage.


4-(4-Alkoxyphenoxymethyl)benzoic acids were obtained by the reactions of 4-alkoxyphenols and methyl 4-bromomethylbenzoate. (S)-4-(2-Methylbutoxy)phenol was prepared by the usual method and esterifications were carried out using dicyclohexylcarbodi-imide. The benzoic acids (carbon number 3—9) show nematic and smectic C phases; the thermal properties are summarized in Table 1.

Both series have the fundamental $C-S_C^*-S_A-I$ type mesomorphic sequence, and only the propoxy homologue of (2) displays a cholesteric phase.

The $-OCH_2$ - linkage has been used in nematic materials. However, the $-OCH_2$ - linkage is less important than the ester and azomethine ones, because it reduces the nematicisotropic transition temperatures, while the melting points are increased.⁵ In fact, the cholesteric stability for series (2) is lower than those of the other linkages. However, the thermal Table 1. Transition temperatures (°C) for series (1) and (2).³

Compound	n	С	sč	۾S Ś	V C	h I
(1)	3		70.8 -			•
. ,	4	•	63.5 -		_	•
	5		41.2 -		(37.5) ~	•
	6	•	43.6 (-	31.3 •	41.3) ~	•
	7	•	39.0 (-	35.3 ·	40.1) -	•
	8ь	•	45.0 (-	38.0 ·	42.7) -	•
	9	•	44.8 (-	34.5 •	44.4) -	•
(2)	3	•	122.8 -	•	129.0 ·	131.2 ·
	4	•	115.4 -	•	137.8 -	•
	5	•	108.8 (-	101.0) ·	135.0 -	•
	6	•	104.4 •	108.3 ·	140.2 -	•
	7°	•	102.0 ·	119.8 ·	135.9 -	•
	8	•	102.7 ·	125.1 ·	138.8 -	•
	9	•	104.5 ·	122.8 ·	139.9 -	•

^a C, S^{*}_C, S_A, Ch, and I represent crystal, smectic C, smectic A, cholesteric, and isotropic phases, respectively. Parentheses indicate monotropic transitions. ^b In ref. 4, the transition temperature (m.p. 45.8 °C, non-mesogenic) for only the octyloxy homologue has been reported. ^c This compound underwent a smectic S^{*}_C transition at 115 °C.

stabilities of the S_{C}^{*} and S_{A} phases for series (1) are quite similar to those of the biphenyl,¹ phenyl benzoate,¹ and benzylideneaniline compounds.⁶

The replacement of the $-OCH_2$ - linkage in series (1), by a $-NHCH_2$ - one results in disappearance of the mesophases, while the melting points are similar to those of series (1).

The spontaneous polarization for the heptyloxy homologue of series (1) was *ca*. 5 nC/cm^2 at 30 °C. This is also analogous to those of the corresponding biphenyls and phenyl benzoate compounds.⁶

In conclusion, the homologous series (1) might be useful materials for devices employing a ferroelectric mode, and the $-OCH_2$ - linkage (as well as the ester and azomethine ones) is desirable for the smectic materials.

Received, 21st March 1986; Com. 379

References

- 1 J. W. Goodby and T. M. Leslie, 'Liquid Crystals and Ordered Fluids,' eds. A. C. Griffin and J. F. Johnson, Plenum Press, New York, 1984, vol. 4, pp. 1ff.
- 2 G. W. Gray and K. J. Harisson, *Mol. Cryst. Liq. Cryst.*, 1971, 13, 37; R. B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, *J. Phys. Lett.*, 1975, 36, 69.
- 3 H. Zaschke, J. Prakt. Chem., 1975, 317, 617.
- 4 T. Inukai, K. Furukawa, K. Terashima, S. Saito, M. Isogao, S. Hattori, K. Iwasaki, T. Kitamura, and A. Mukoh, *Jpn Kokai Tokkyo Koho*, 60-149547.
- 5 G. W. Gray and D. G. McDonnell, *Mol. Cryst. Liq. Cryst.*, 1979, **53**, 147.
- 6 T. Inukai, K. Furukawa, K. Terashima, S. Saitoh, S. Hattori, M. Isogai, K. Iwasaki, T. Kitamura, and A. Mukoh, unpublished results.